Search Your Question

Showing posts with label Storage. Show all posts
Showing posts with label Storage. Show all posts

Delete record from Core-data


Deleting a record from a persistent store involves three steps:

  1. Fetch the record that needs to be deleted
  2. Mark the record for deletion
  3. Save the changes
Code : 

let fetchRequest: NSFetchRequest<Profile> = Profile.fetchRequest()
fetchRequest.predicate = Predicate.init(format: "profileID==\(withID)")
let objects = try! context.fetch(fetchRequest) // Step 1
for obj in objects {
    context.delete(obj)  // Step 2

do {
    try //  <- remember to save data // Step 3
} catch {
    // Do something... 

Difference between Core Data and Sqlite

Ans : Core-data is not database that we understand. Sqlite is Database. 

Lets have a look over difference between Core-data and Sqlite (or Database) :

Core Data:

  1. Primary function is graph management (although reading and writing to disk is an important supporting feature).
  2. Operates on objects stored in memory (although they can be lazily loaded from disk).
  3. Works with fully-fledged objects that self-manage a lot of their behavior and can be sub classed and customized for further behaviors.
  4. Non-transactional, single threaded, single user (unless you create an entire abstraction around Core Data which provides these things).
  5. Only operates in memory.
  6. Requires a save process.
  7. Can create millions of new objects in-memory very quickly (although saving these objects will be slow).
  8. Leaves data constraints to the business logic side of the program.

Database or SQLite:

  1. Primary function is storing and fetching data.
  2. Operates on data stored on disk (or minimally and incrementally loaded).
  3. Stores "dumb" data.
  4. Can be transactional, thread-safe, multi-user.
  5. Can drop tables and edit data without loading into memory.
  6. Perpetually saved to disk (and often crash resilient).
  7. Can be slow to create millions of new rows.
  8. Offers data constraints like "unique" keys.
Credit :

difference between coredata and sqlite

Advantage of Core-data : 

  • Much better memory management. With a plist you must load the entire thing into memory; with Core Data only the objects you're currently using need to be loaded. Also, once objects are loaded, they're normally placeholder "fault" objects whose property data doesn't load until you need it.
  • Related to the above, when you have changes, you can save only the changed objects, not the entire data set.
  • You can read/write your model objects directly instead of converting them to/from something like an Dictionary.
  • Built-in sorting of objects when you fetch them from the data store.
  • Rich system of predicates for searching your data set for objects of interest.
  • Relationships between entities are handled directly, as properties on the related objects. With a plist you would need to do something like store an object ID for a relationship, and then look up the related object.
  • Optional automatic validation of property values.
More about Core-data : 

  • CoreData isn't a Database. It's an object persistence layer. There is no concept of primary keys or foreign keys in CoreData.
  • If you want to establish a relationship between two entities. You'll define a relationship, CoreData takes care of how that relationship is stored.
  • Select an entity, use plus button at the bottom of the entities attributes list, select add relationship, select the destination entity from the dropdown.
  • Select the destination entity and define an inverse relationship in the same way.

What are persistent storage in iOS and Which one is most secure?

Ans : There are SIX types of persistent storage.

1. Userdefaut
2. Property List
3. Sqlite
4. Keychain
5. Files
6. Coredata

If brief answer they asked then follow :

1. Userdefaut : NSUserDefault class allow us to store small amount of data. It can store NSData, NSString, NSArray, NSDictionary,  NSNumber,
The maximum data can we saved depends on iOS. Currently it can store 4GB of data.
But if file is too large, then it takes too much time for retrieve and write data in file. So we can save small amount of data only. Otherwise it waste time.
We can also store our custom objects in userDefaults. We achieve this by conforming our class to NSCoding protocol. We can then convert our custom object into NSData with the help of NSKeyArchiver class. The NSData is then stored into userDefaults like other objects. Similarly we can get NSData from userDefaults and then using NSKeyUnarchiver convert the NSData back to our custom objects.

2. Property List : As userdefaut save data in plist file, so like userdefaut, Property List is not also made for save large amount of data. There is one method of NSArray and NSDictionary as writeToFile for saving data.

3. Sqlite : If your application deals with large amount of data with relationship then we should use sqlite. It's API is written in C language and embedded with our application so it is very fast. There are ORM for bringing gap between obj c app and sqlite like, FMDB,  Realm

4. Keychain : If you want to save highly sensitive and secure data like passwords and secret codes then there is a good news for you. Storing data in keychain is most secure way. To store data, I have taken library named SwiftKeyChainWrapper from cocoapods.

To Save data in Keychain : 

let saveSuccessful: Bool = KeychainWrapper.standard.set("Some String", forKey: "myKey")

To get data from Keychain :

let retrievedPassword: String? = KeychainWrapper.standard.string(forKey: "userPassword")

To remove data from keychain : 

let removeSuccessful: Bool = KeychainWrapper.standard.remove(key: "myKey")

5. Files : You can save data to any type of file. There are three type of folder like Document, Library, Tmp fo saving various type of file.

6. Core Data : Apple’s solution for persistence allows applications to persist data of any form and retrieve it. It  isn’t technically a database, although it usually stores its data in one (an SQLite DB). It’s not an object-relational mapper (ORM), though it can feel like one. It’s truly an object graph, allowing you to create, store, and retrieve objects that have attributes and relationships to other objects. Its simplicity and power allow you to persist data of any form, from basic data models to complex.